Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 12: 826882, 2021.
Article in English | MEDLINE | ID: covidwho-1674339

ABSTRACT

Swine enteric coronaviruses (SECoVs) including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV), account for the majority of lethal watery diarrhea in neonatal pigs and pose significant economic and public health burdens in the world. While the three SECoVs primarily infect intestinal epithelia in vivo and cause similar clinical signs, there are evident discrepancies in their cellular tropism and pathogenicity. However, the underlying mechanisms to cause the differences remain unclear. Herein, we employed porcine enteroids that are a physiologically relevant model of the intestine to assess the host epithelial responses following infection with the three SECoVs (PEDV, TGEV, and PDCoV). Although SECoVs replicated similarly in jejunal enteroids, a parallel comparison of transcriptomics datasets uncovered that PEDV and TGEV infection induced similar transcriptional profiles and exhibited a more pronounced response with more differentially expressed genes (DEGs) in jejunal enteroids compared with PDCoV infection. Notably, TGEV and PDCoV induced high levels of type I and III IFNs and IFN-stimulated gene (ISG) responses, while PEDV displayed a delayed peak and elicited a much lesser extent of IFN responses. Furthermore, TGEV and PDCoV instead of PEDV elicited a substantial upregulation of antigen-presentation genes and T cell-recruiting chemokines in enteroids. Mechanistically, we demonstrated that IFNs treatment markedly elevated the expression of NOD-like receptor (NLR) family NLRC5 and major histocompatibility complex class I (MHC-I) molecules. Together, our results indicate unique and common viral strategies for manipulating the global IFN responses and antigen presentation utilized by SECoVs, which help us a better understanding of host-SECoVs interactions.


Subject(s)
Antigen Presentation/immunology , Coronavirus Infections/veterinary , Gene Expression Regulation , Interferons/metabolism , Porcine epidemic diarrhea virus/physiology , Swine Diseases/etiology , Swine Diseases/metabolism , Animals , Gastroenteritis, Transmissible, of Swine/etiology , Gastroenteritis, Transmissible, of Swine/metabolism , Gastroenteritis, Transmissible, of Swine/pathology , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Swine , Swine Diseases/pathology , Transmissible gastroenteritis virus
2.
Virology ; 552: 43-51, 2021 01 02.
Article in English | MEDLINE | ID: covidwho-843443

ABSTRACT

This study focused on intestinal restitution including phenotype switching of absorptive enterocytes and the abundance of different enterocyte subtypes in weaned pigs after porcine epidemic diarrhea virus (PEDV) infection. At 10 days post-PEDV-inoculation, the ratio of villus height to crypt depth in both jejunum and ileum had restored, and the PEDV antigen was not detectable. However, enterocytes at the villus tips revealed epithelial-mesenchymal transition (EMT) in the jejunum in which E-cadherin expression decreased while expression of N-cadherin, vimentin, and Snail increased. Additionally, there was reduced expression of actin in microvilli and Zonula occludens-1 (ZO-1) in tight junctions. Moreover, the protein concentration of transforming growth factor ß1 (TGFß1), which mediates EMT and cytoskeleton alteration, was increased. We also found a decreased number of Peyer's patch M cells in the ileum. These results reveal incomplete restitution of enterocytes in the jejunum and potentially impaired immune surveillance in the ileum after PEDV infection.


Subject(s)
Coronavirus Infections/veterinary , Enterocytes/pathology , Epithelial-Mesenchymal Transition , Gastroenteritis, Transmissible, of Swine/pathology , Peyer's Patches/pathology , Porcine epidemic diarrhea virus/pathogenicity , Animals , Cadherins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gastroenteritis, Transmissible, of Swine/immunology , Gastroenteritis, Transmissible, of Swine/virology , Ileum/immunology , Ileum/pathology , Intestinal Mucosa/pathology , Jejunum/immunology , Jejunum/pathology , Microvilli/pathology , Swine , Tight Junctions/pathology , Transforming Growth Factor beta1/metabolism , Weaning
3.
Viruses ; 12(4)2020 04 05.
Article in English | MEDLINE | ID: covidwho-31709

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been reported to use aminopeptidase N (APN) as a cellular receptor. Recently, the role of APN as a receptor for PEDV has been questioned. In our study, the role of APN in PEDV and TGEV infections was studied in primary porcine enterocytes. After seven days of cultivation, 89% of enterocytes presented microvilli and showed a two- to five-fold higher susceptibility to PEDV and TGEV. A significant increase of PEDV and TGEV infection was correlated with a higher expression of APN, which was indicative that APN plays an important role in porcine coronavirus infections. However, PEDV and TGEV infected both APN positive and negative enterocytes. PEDV and TGEV Miller showed a higher infectivity in APN positive cells than in APN negative cells. In contrast, TGEV Purdue replicated better in APN negative cells. These results show that an additional receptor exists, different from APN for porcine coronaviruses. Subsequently, treatment of enterocytes with neuraminidase (NA) had no effect on infection efficiency of TGEV, implying that terminal cellular sialic acids (SAs) are no receptor determinants for TGEV. Treatment of TGEV with NA significantly enhanced the infection which shows that TGEV is masked by SAs.


Subject(s)
CD13 Antigens/metabolism , Gastroenteritis, Transmissible, of Swine/pathology , Porcine epidemic diarrhea virus/metabolism , Receptors, Virus/metabolism , Sialic Acids/metabolism , Transmissible gastroenteritis virus/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Enterocytes/virology , Hydrocortisone/pharmacology , Insulin/pharmacology , Respiratory Mucosa/virology , Spermidine/pharmacology , Swine , Vero Cells , Virus Attachment , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL